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ABSTRACT

The exact solution of the scattering of ‘obli'quely incident
plane waves by an elliptical dielectric cylinder is obtained. It
is found that each expansion coefficient of the scattered or
transmitted wave is coupled to all coefficients of the series ex-
pansion for the incident wave except when the elliptical cylinder
degenerates to a circular one. Both polarizations of the inci-
dent wave are considered: one with the incident electric vector
in the axial direction, and the other with the incident magnetic
vector in the axial direction. It is noted that in the general case
of oblique incidence the scattered field contains a signifiéant ‘-

cross-polarized component which vanishes at normal incidence.

-3

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . « ¢ ¢ o v v v v v v o v v v v ii

I. INTRODUCTION . . . . ¢ . +« v ¢ « v v v v v v v o . 1

II. FORMULATION OF THE PROBLEM . . . . . . . . . . 1
III. SCATTERING OF AN OBLIQUELY INCIDENT

PLANE WAVE. . . . . . . . . .« o v v v v v v 4

A, E-WAVE . . . . . . . o000 e e e e e e e 6

B. H-WAVE . . . . . . . .« o v v v« . 16

IV. CONCLUSIONS. . . . . v + + v ¢ v v v v v v v v o « 16

APPENDIX - FORMULAS FOR ap, 4 Bm, n
‘ Ym,n’ANDxm,n s e e e e e e . . 17

UREFERENCES. . .+« « « o v e v v v v v v u .. 18

W
3




I. INTRODUCTION

The problems of scattering of waves by a circular dielectric
cylinder have been considered by many authors (Refs.1-3). Most
recently, the exact solution of the problem of diffraction of normally
incident plane waves by a dielectric elliptical cylinder was obtained
{(Ref.4). However, the general case for oblique incidence has not been
considered. It is the purpose of this paper to present a complete solution
for this general problem. It is hoped that the results will be a.plicable

to the problem of scattering of light by noncircular fibers.

II. FORMULATION OF THE PROBLEM

To analyze this problem, the elliptical cyclinder coordinates
(§,7, z), as shown in Fig. 1, are introduced. Interms of the rectangular
coordinates (x,y, z), the elliptical cylinder' coordinates are defined by the

following relations:

x = qcosh § cosm
y = q sinh § sin 7

(1)
z =z

(0<€< o, 0<n < 2m)
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Fig.l Plane Wave Incident On An Elliptical Dielectric

Cylinder. Arrow Indicates The Direction Of
Incident Wave.

where q is the semifocal length of the ellipse. The contour surfaces
of constantf , are confocal elliptic cylinders, and those of constant n
are confocal hyperbolic cylinders. Ome of the confocal elliptic cylinders
\a;lit}i §-= 60 is assumed to coincide with the boundary of the solid dielec-
tr'ic cylinder, and z-axis coincides with its longitudinal axis. It wil} be
‘a.ssu.r'rie(.i that this dielectric cylinder, which has a permittivity €, a

ﬁgrmea’bility pp, and a éonductivﬁty of zeéro, is embedded in'a hofnogeneous



perfect dielectric medium (€,, py). A possible solution of the wave
: . iz _-~iwt . .
equation is then R(§) 6(n) e e where R and 6 satisfy the differ-

ential equations

12

.d_..R_ - (c - 2y2 cosh 26) R=10 “(2)
ag? o
d%e 2 :

— + (c -2y“cos 27m) 6 =0 (3)
an?

in which ¢ is the separation constant and YZ‘ = (k2 - [32‘) q2/4, k being ghe ,
wave number.

The periodic solutions of the equation in 7 are of two types: even
about 7 = 0, and odd about 7 = 0 (Ref.5). They are possible only for
certain characteristic values of ¢. The even and odd functions are re-
spectively denoted by cen('r;,yz) and sey(m, yz) with the sequence in n
according to increasing values of c. It should be noted that these functions
are orthogonal functions. The solutions of (2) corresponding to the even
function cep(?, YZ) having the same characteristic values of ¢ are
Ceqlé, YZ) and Feyp(&, yz), and those corresponding to the odd function
sen(n, yz) are Sep(§, YZ) and Geyy(€, v%) (Ref.5).

The proper choice of these functions to represent the electro-
magnetic fields depends upon the boundary conditions. For the region
within the dielectric cylinder, 'gll ﬁeid céméoﬁent_s mu;st be-finite. All

field components for the scattered wave must satisfy the Sommerfeld's



radiation condition at infinity. Consequently, the appropriate solutions

of the wave equation for the region inside the dielectric cylinder are

Cen(£, v]) cen(n v3)

eiﬁz (4)
Sen(€, v3) seq(n, v2)
and those for the scattered wave are
1),(2
( mel ) e, ¥y cen(m vd) ipz
€ (5)
Ne;”'(Z)(fx Y%) se (7, Yg)
where
Ml B (e, v2) = Cenl€, v8) +i Feygle, v2) (6)
1}, (2
Neb ¥ (e, v2) = sepe, v Gey, (€, v2) (7)

y‘:‘ and yg are given in the next section.

III. SCATTERING OF AN OBLIQUELY INCIDENT PLANE WAVE
Two types of incident waves are possible. The one, called an E-

wave is defined by H, = 0, and the other called an H- wave is defined by

E, =0,

4



" It can be shown that a plane wave with its direction of propagation

defined by the angles ¢ and 6 (see Fig. 1) is given by

ikg(x cos¢ sin 0 + y sin ¢ sin 8 + z cos 6)
e

=' eiko‘[q sin @ (cosh & cos? cos¢ + sinh § sin?m sin¢) + 2z co’se]

o L 2 2 2
'22 P Cezn: Yo) cezn(m Yo) cepy (¢’ Yo)
n=o 2n

1 2 2 2
t Somg o2n+2 & Yol Seaniz (7 Yo) seant2 (60 Yo)

(8)

2 )
+ Ceanrl (€ ¥5) ceaniy (M ¥8) cepnyy (¢ Yg)

P2n+1

ikoz cos @
+ e

2 2
Seznt1 € Y5) seans1 () o) seyn,y (P, Yg)]
S2n+1

where yg = kcz)qz sin29/4, kg = Zw/)\o, and >‘o is the free-space wave-
length. P2n’ P2n+l’ S2nt2: @nd sp . are joining factors (Ref. 5).
In order to simplify the notations for the Mathieu and modified

Mathieu functions without any ambiguities, the following abbreviations

are used:
Ce (£, ¥2) = Cey(€) cen (7 ¥&) = ceq(n)
Sen(£, ¥5) = Sen(§) sen (7, Y = seq(n)
Cenlgr ¥Z) = Cenle) cen(ms ¥{) = ceqln)
Sen(€: Vi) = Sen(€) sen(m, ¥v{) = seq(n)



Me (@) (e 12y - e (10102) ) -
(9
ne, 3 (e, 42) e (112 ) |

with v = (k§ - k& cos® 8) q°/4 where ki = w2y €.

A. E-WAVE

The axial components of an incident E-wave are

i . .

E, = Ej {the right-hand side of Eq. (8)} (10)
i

H = 0. (11)

It is interesting to note that, unlike the case for a normally incident wave
or for a perfectly conducting cylinder at oblique incidence, the boundary
conditions for the present general case of oblique incidence on a dielectric
elliptical cylinder cannot be satisfied if the z component of the scattered
or transmitted magnetic field is taken to be zero for an incident E-wave,
or if the z component of the scattered or transmitted electric field is taken
to be zero for an incident H-wave. Hence, referring to (4) and (5), we see
that the axial components of the scattered field and of the transmitted field o

inside the dielectric cylinder must be of the form



®
A
Es = 2E, z [—&'- MeZn(g)cean(n) ces, @)

B2n+2 N( )

+ Somto Consn &) 58, (M e, +2(4>)

Aon+i . (1)
+i p2n+‘ ezn+l(€) 082n+|(n)082n+| (¢)

82n+l () ikoz cos8
Sont| Ne2n+l(€)s°2n+l (7)502n+|(¢’)]
(12)
S [can (D
s.
Hz‘onnZ::o[ pzrr: Mean(f)cean(n)cean(tﬁ)
2nt2
_{n‘f‘, N"a +2€050, o (Msey o ()
+ ig-g-'lﬂMem &) ce (n)-ce (@)
Pont( To2n+I 2n+1'MC%2n 4+
_ Dansr D) ik 2 cosB
+ 152 Negpy (€)se 04 (1) sepqny ()] & 70
2n+ |
(13)

‘ and

@
*
2k n§o [—;—Cean(é Jee, (7)) ce2n(‘¢)

32n+2

+?g;-+—2- Se 2n+2(€) se 20 +2(7)) 582n+2(¢)
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ontl *
I Cey . (&)cey (1) ce2n+,(¢>)

+ i

G > _ ikoz cos8
+.-¥§ff’l- on H(f)se I(77) seZn+l(¢)] e

(14)

MYz 2g ooz [ Pan & (€) cer (n) ce, (P)
z” °n_o 3-;; 2n 2n 2n

Q * *
+ ?:"—:—i Sepnsp E)s€), L (Mse, o)
n

- Pongy o » *
+ i —g—; Ce, . (Elce, , (Mcey o ()

Qan+1 . »

4 * ] ikgz cos @
'52n+4 Se2n+|(f)se2n+l(‘r]) se2n+|(¢) e'o

(15)
where A,, B,, C,, Dy, Fn G Pn,‘ and Q, are arbitrary unknown

coefficients that can be determined by applying the boundary conditions.

p;n, p§n+l, s;n+2, and Sgn+l are joining factors. All transverse fields

can be derived from Maxwell's equations with the knowledge of the axial

. fields.

'. .. .The boundary conditions require the continuity of the tangential

.comporients of the electric and magnetic field at the boundary surface

6 =€o;‘i'._e.,,



[r;h._é. of Eq. (10) with ¢ = 60]+ [r.h. s. of Eq.(12) with § =£o]
= [r.h.s. of Eq.(14) with § =£o], (16)

[r.h.s. of Eq.(13) with § :Eo] = [r.h.s. of Eq.(15) with § =£o],

(17)

1

_ _ 9 |
kc?; s——inze {11(0 cosea—n [r.h. s. of Eq.(10) with § = fo]

+ ikg coOs 9;1—7- [r.h. s. of Eq.(12) with § = fo]

. 0 ith § =
oo Fg= [r.h.s. of Eq.(13) with § =& ]

1
(kf-kg cos? @)

{iko cos 63% [r.h. s. of Eq.(14) with § = §o]

-iwp,l-a% [r.h.s. of Eq. (15) with{=fo]}, (18)
(o]

1 ) d . ]
kZsin@ {-M° &, [”"5- of Eq. (10) with f-go]

-iweo‘%. [r.h.s. of Eq.(12) with § = {o]
(]

-ikg cos © -a% [r.‘h.‘s. of Eq.(13) with & =€o]}

1

e 9 oo
- TRy { iwey 56 [r.h.s. of Eq. (14) with ¢ _go]

-iky cos 0% [r.h. s of Eq.(15) with § = §, ] , (19)

0 -9~



where r.h.s. means the right-hand side. It is noted that in contrést.. '
with the spherical or circular cylinder case the angular functions in the
elliptical cylinder case are functions not only of the angular component
but also of the characteristics of the medium. Consequently, the sum-
mation signs and the angular functions in the above equations may not be
omitted. However, it will be shown that this difficulty may be overcome

by the orthogonality properties of Mathieu functions. Substituting the

expansions
* Dy
cep, (n) = z Qm ,n cenlM (20a)
n=0
M <, ‘
sem (M) = ) Bm,n sep, (1) -+ (20b)
n=0 B
d ®, S ' '
E-n— cem(‘r;) = nz-:o ym,n sen(??) . o . {20c¢)

wl ' “.. 4‘. .. .
ad,r-]sem(n) = n)=:0 X',‘-,"-,-,n'l.f:en'.(."?) .

(20d)
into Eqs. (16) through (19?_, _'and'appiy{ng.the‘o.rthog‘o'nalit'y relations of
Mathieu functions, 1ea_d$'f ‘yo-' ,fhe followli'ng exp',res's.ibns:

.. ‘. - - ‘@ . . . o B
o) . T, t F *
o[ coq o) +antey €0)] con@h) =TGR Comiy) am ) myn o (21
e . ‘m=o'm

-10-



[Sen(fo) +Bp Nen(fo)] sen(@p) = z —:53 € )semid) Bm n (22)

m=0

Cn (1 —m/_p-mc*(g) (¢)Q ,

pn Men(éo) cen(¢) -.néo pr: em‘ 0 cem m’n (23)
Y Qm . %

Sn Ne(,l\) (Eo)sen(4>)= Z —.wm se'm €, ) semld) Bem,n » (24)

X DIVER |
\/-‘SECOSB( _M'_’L%é)[ Yy S—,'r-n-[Sem({o)+ BmNe(rn (Eo)] sem(d’)Xm)n]

cos =0
- %\‘_Menm/ €o) cen ()

/

() (g8 )5 B ool cemi) Gmn o
Ko/ \ kf-kgcos 8 /mig "M “(25)

kS -Kgeos 8/ | o

$siff \| & W, 7 1
‘.\//_EE cos8 (l-——‘éﬁ'{‘—;—)[z T;"m.'[cém(ff.o)“"ArrMe_m.(Eo)] fem(‘f’)Ym,n

00 Nep o) sen ($)

2 .2 o,
M Ko sin 8 n 2 (¢ )se (B n
7( F—o) k2 - k2cos? 8 mz_:o's—; ef" Lo sem !

(26)

-11-



(e, | .
sLn[Se,’, (Eo)+BnNen_ ({o)] sen(¢)

G.)'l .
+foos@( (k5 sin’f )zg Mem)(fo)cem(‘ﬁ))’mn

k2~ k2 c0s28/ ‘muo

kZsintd e, X '
S L Z Sem (€o)sem (P)Bm,n

- -k%cosze —e—
(27)
| ()’ -
i [Ce,q €o) + Ap Mep, ({o)] cen(e)
Qs
+ COSQ koSln 9 z Dm N (fo)sem(¢)xm n
eo T K -kBw0? 8/ &,
ko sin 8 € 3/ Fm
S el €0 2 o T Com o) oem($) Ay -
(28)
(n=0,1,2,3,4....).

am,n*Bm,n!)’m,n’“"d xm,n are given in the Appendix. The prime on the
summation sign means that when n is odd, the above series are summed
over all odd values of m, and when n is even, the series are summed
over all even values of m. The primes on the modified Mathieu functions
denote differentiation with respect to §,. The unknown coefficients Ap,

Bn, Cny Dn, Fn, Gpn, Pp, and Q, can now be obtained from the above

equations. Combining Eqs. (21), (24), (26), and (28) gives

-12-



, .
e .. & -
FrSmn +Qritmn =0

(o}

3

®, e . e _ @
2 qumn+Qmen-Wn
m=0

(n=0,1,2,3...)

and combining Eqgs. (22), (23), (25) and (27) gives

@/ o o
X BmSmn t Bn tmn=0
m=0
o/

o _ .0
z Gm“mn+Pmen‘ W
m=0

where

@ ,
e _ /€0 456 (1-0) f. 2 AmrY
= cos X mr /7mn

oo/
$%nz /-:L-% cos8 (1= x*) am 2. BemrXmn

r=0

-13-

(29)

(30)

(31)

(32)
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e /_e_g_ cos 8 (1-x2) 9m rZ-:o ,er Xen

. Q /-
vg‘nz\/-’s—zcose(l-xz)fmz Cmr Yrn

o r=0

(33)

The following abbreviations have been used:

hn :i Cen (60) Cen (¢)t h:’l = pir: Ce':‘l (60) cen (¢)’
gn = sln Se, (€o) sen(¢); | ' §;= ;1— Se;(fo) sen (),
n
a, = % Megl) (Eo) cen(¢), : a;l = p—l‘; Megl) (50) cen(¢).
1 (1) S| (1’
Op = 7> Neép enl®) n ¥ 7 Nén o! Sen Pl
ba =2 Nea (€9 sen(d) ba=i= Nep  (£o) seq(d)

-14-
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fn= =% Cer(£,) cey (), fn = 5% Gep (€,) cep (@),
Pn o . , n .
: 1 . * S . . L 1 ! :
Bn = ¥ Sen (&o) seq (@), a €n = &% Se, (&) sen.(¢),
i(g sin%0"
= R 34
X .kf-k(?;- cos?e (34)

" The éo_efﬁc%enté Fmand -'Qr;v andGm and Py, can be obtaine.d: readily,
from £qs. (29) and (30), ;n&_ Elé's..('?:l).a_n.d (32) respectively. Knowing
Frm: Qm: Gm: and P'm., the c‘olef-fi‘cients Ay, ‘Bﬁ.,l Cp» and D, can be
found, respectively, from Eqs.(21) through (24).

It is interesting to note that the roots of the determinant of Eqgs.
(29) and (30) provide the propagation constants of a set of surface waves
along an elliptical dielectric cylinder (Ref. 6). Due to the asymmetry of
the elliptic cylinder, it is possible to have two orientations for the field
configurations. The propagation constants of the other set of surface
waves are obtained from the roots of the determinant of Eqs.(31) and (32).
This surface wave problem has a direct application to the problem of
guiding light waves along a flat fiber i.e., the fiber optics problem
(Ref. 6) .

The transmitted fields in the dielectric cylilndgr and the scattered
fields in free space due to an incident E-wave are now completely

determined.



B. H-WAVE

The corresponaing result for the case of an incident H-wave is
of the same form as above if E is replaced by H, H is replaced by -E,

€ is replaced by yu, and p is replaced by €, throughout.

IV. CONCLUSIONS

The exact solution of the problem of the scattering of an obliquely
incident plane wave by an elliptical dielectric cylinder, or by a dielectric
ribbon is obtained. It is noted that unlike the case for a circular dielectric
cylinder, each expansion coefficient of the scattered or transmitted wave
for the elliptical dielectric cyclinder is coupled to all coefficients of the
series expansion for the incident wave. Hence, the results are much more
involved. Numerical investigation for the case of normally incident plane
waves shows that the infinite determinants representing these expansion
coefficients for the scattered or transmitted wae converge quite rapidly
for small values of koq/2; only the first few terms in the determinants
are needed as long as koq/2 is less than 5 (Ref.4). This range of k,q/2
covers, however, most of the range not covered by the usual approximate
diffraction theory. The results presented here are ?articularly useful in

studying the scattering of light by thin fiber ribbous.

-16-



APPENDIX"
' FORMULAS FOR ‘a1 Bm. o Ymi,w AND Xm,n
. It can readily be ‘s_ho.w.n.from~ the t.}ie.br'y 'of':M?ajtliieu_-fu'nc'tion's that

:z'1r

"am N -'f cem (1)) cen (17) d‘q/f cen (ﬂ'r})dn
o

g

B f

sem('q) sen('r;) dn/f sen (ﬁ)dn

ow . 2w
© Ymypn® "'cé',,,m?fi%ri(n)‘dn/j; seq ()dm .

. Xm,n-éf.se'm("f))cen m dn/j;céﬁ_'(n)d‘n )

where the prinie siédifies-.tﬁe derivative of the function with respeét to
" its a¥gument. The above integ;als.can 'eaéily be integrated using the
series expansions of Mathieu functions in terms of trigonometric functions

(Ref.5).’
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